(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(a, cons(x, k)) →+ f(cons(x, a), k)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [k / cons(x, k)].
The result substitution is [a / cons(x, a)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(a, empty) → g(a, empty)
f(a, cons(x, k)) → f(cons(x, a), k)
g(empty, d) → d
g(cons(x, k), d) → g(k, cons(x, d))
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
cons/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(a, empty) → g(a, empty)
f(a, cons(k)) → f(cons(a), k)
g(empty, d) → d
g(cons(k), d) → g(k, cons(d))
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
f(a, empty) → g(a, empty)
f(a, cons(k)) → f(cons(a), k)
g(empty, d) → d
g(cons(k), d) → g(k, cons(d))
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gThey will be analysed ascendingly in the following order:
g < f
(10) Obligation:
TRS:
Rules:
f(
a,
empty) →
g(
a,
empty)
f(
a,
cons(
k)) →
f(
cons(
a),
k)
g(
empty,
d) →
dg(
cons(
k),
d) →
g(
k,
cons(
d))
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
g < f
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_empty:cons2_0(
n4_0),
gen_empty:cons2_0(
b)) →
gen_empty:cons2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
g(gen_empty:cons2_0(0), gen_empty:cons2_0(b)) →RΩ(1)
gen_empty:cons2_0(b)
Induction Step:
g(gen_empty:cons2_0(+(n4_0, 1)), gen_empty:cons2_0(b)) →RΩ(1)
g(gen_empty:cons2_0(n4_0), cons(gen_empty:cons2_0(b))) →IH
gen_empty:cons2_0(+(+(b, 1), c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
f(
a,
empty) →
g(
a,
empty)
f(
a,
cons(
k)) →
f(
cons(
a),
k)
g(
empty,
d) →
dg(
cons(
k),
d) →
g(
k,
cons(
d))
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Lemmas:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
The following defined symbols remain to be analysed:
f
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_empty:cons2_0(
a),
gen_empty:cons2_0(
n407_0)) →
gen_empty:cons2_0(
+(
n407_0,
a)), rt ∈ Ω(1 + a + n407
0)
Induction Base:
f(gen_empty:cons2_0(a), gen_empty:cons2_0(0)) →RΩ(1)
g(gen_empty:cons2_0(a), empty) →LΩ(1 + a)
gen_empty:cons2_0(+(a, 0))
Induction Step:
f(gen_empty:cons2_0(a), gen_empty:cons2_0(+(n407_0, 1))) →RΩ(1)
f(cons(gen_empty:cons2_0(a)), gen_empty:cons2_0(n407_0)) →IH
gen_empty:cons2_0(+(+(a, 1), c408_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
f(
a,
empty) →
g(
a,
empty)
f(
a,
cons(
k)) →
f(
cons(
a),
k)
g(
empty,
d) →
dg(
cons(
k),
d) →
g(
k,
cons(
d))
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Lemmas:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
f(gen_empty:cons2_0(a), gen_empty:cons2_0(n407_0)) → gen_empty:cons2_0(+(n407_0, a)), rt ∈ Ω(1 + a + n4070)
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
f(
a,
empty) →
g(
a,
empty)
f(
a,
cons(
k)) →
f(
cons(
a),
k)
g(
empty,
d) →
dg(
cons(
k),
d) →
g(
k,
cons(
d))
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Lemmas:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
f(gen_empty:cons2_0(a), gen_empty:cons2_0(n407_0)) → gen_empty:cons2_0(+(n407_0, a)), rt ∈ Ω(1 + a + n4070)
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
f(
a,
empty) →
g(
a,
empty)
f(
a,
cons(
k)) →
f(
cons(
a),
k)
g(
empty,
d) →
dg(
cons(
k),
d) →
g(
k,
cons(
d))
Types:
f :: empty:cons → empty:cons → empty:cons
empty :: empty:cons
g :: empty:cons → empty:cons → empty:cons
cons :: empty:cons → empty:cons
hole_empty:cons1_0 :: empty:cons
gen_empty:cons2_0 :: Nat → empty:cons
Lemmas:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_empty:cons2_0(0) ⇔ empty
gen_empty:cons2_0(+(x, 1)) ⇔ cons(gen_empty:cons2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_empty:cons2_0(n4_0), gen_empty:cons2_0(b)) → gen_empty:cons2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(24) BOUNDS(n^1, INF)